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a b s t r a c t 

Accurate and automatic segmentation of the hippocampus plays a vital role in the diagnosis and treat- 

ment of nervous system diseases. However, due to the anatomical variability of different subjects, the 

registered atlas images are not always perfectly aligned with the target image. This makes the segmenta- 

tion of the hippocampus still face great challenges. In this paper, we propose a robust discriminative label 

fusion method under the multi-atlas framework. It is a patch embedding label fusion method based on 

conditional random field (CRF) model that integrates the metric learning and the graph cuts by an inte- 

grated formulation. Unlike most current label fusion methods with fixed (non-learning) distance metrics, 

a novel distance metric learning is presented to enhance discriminative observation and embed it into the 

unary potential function. In particular, Bayesian inference is utilized to extend a classic distance metric 

learning, in which large margin constraints are instead of pairwise constraints to obtain a more robust 

distance metric. And the pairwise homogeneity is fully considered in the spatial prior term based on 

classification labels and voxel intensity. The resulting integrated formulation is globally minimized by the 

efficient graph cuts algorithm. Further, sparse patch based method is utilized to polish the obtained seg- 

mentation results in label space. The proposed method is evaluated on IABA dataset and ADNI dataset for 

hippocampus segmentation. The Dice scores achieved by our method are 87 . 2% , 87 . 8% , 88 . 2% and 88 . 9% 

on left and right hippocampus on both two datasets, while the best Dice scores obtained by other meth- 

ods are 86 . 0% , 86 . 9% , 86 . 8% and 88 . 0% on IABA dataset and ADNI dataset respectively. Experiments show 

that our approach achieves higher accuracy than state-of-the-art methods. We hope the proposed model 

can be transferred to combine with other promising distance measurement algorithms. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

As we all known, hippocampus plays a vital role in human 

rain. It has been found that the hippocampus is associated with a 

ariety of brain neural diseases, including Alzheimer’s disease (AD), 

eriatric depression, etc. [1] . Different diseases have various de- 

rees of atrophy. For example, patients with AD have significant 

trophy in the CA1 and ERC sub-regions of hippocampus, while in 

lderly patients with depression, the volume of SUB and CA2 sub- 

egions decrease notably. Early detection of changes in the hip- 

ocampus is essential for the early prevention and diagnosis of 

eural diseases. Hence, the automatic and accurate extraction of 
∗ Corresponding author at: School of Computer Science and Engineering, North- 

estern Polytechnical University, Xi’an 710072, China. 
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ippocampus from Magnetic Resonance (MR) images has become 

 pivotal task in medical image analysis [2,3] . 

Due to the irregular shape of the hippocampus and the blurred 

oundary with surrounding tissues, the automatic and accurate 

egmentation of the hippocampus is a challenging task. The ear- 

iest segmentation of specific anatomical structures is achieved by 

xpert manual labeling. But there are long-term and error-prone 

efects, which limit the application of manual marking in big data 

4–6] . Therefore, the automatic segmentation of MR images has 

ecome a hot topic in medical image analysis. Recently, multi- 

tlas segmentation (MAS) method receives broad attention as its 

ood performance in medical image segmentation [7–12] . The MAS 

ethod, which integrates the prior knowledge of medical atlas into 

he segmentation process and then combines with the efficient la- 

el fusion algorithm, can obtain a quite accurate segmentation re- 

https://doi.org/10.1016/j.cmpb.2021.106197
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106197&domain=pdf
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ult on brain MR images. Typically, the MAS method consists of 

wo main steps: (1) atlas image registration, and (2) label fusion 

13] . Specifically, in the first step, the target image and each candi- 

ate image are spatially converted into the identical space to build 

 spatial correspondence [14,15] . Then in the label fusion step, the 

abels from different atlas images are fused to obtain the final es- 

imation of the target image [16–18] . 

In the study of MAS, many scholars work on labeling meth- 

ds to improve the segmentation performance [19–29] . Since the 

natomical variability of various subjects, there are different de- 

rees of registration errors between atlas images and target image. 

owever, appropriate label fusion strategies can effectively reduce 

he impact of the unavoidable registration error. The existing label 

usion methods for medical image segmentation can be roughly di- 

ided into three categories: voting-based labeling methods, patch- 

ased labeling methods, and deep learning-based labeling meth- 

ds. Majority voting (MV) is one of the widely used voting-based 

abel fusion methods [19] . It assigns the same weight for all atlas. 

here are also other techniques such as STAPLE, which estimates 

he weights by rater statistics [20,21] . However, these approaches 

re based on one assumption that there is a voxel-to-voxel corre- 

pondence between the atlas image and the target image. It makes 

he segmentation results sensitive to the registration errors. The 

on local patch-based labeling method (PBM) [22] can solve this 

roblem. In PBM, voting weights are computed between the tar- 

et image patch and atlas patches in a fixed search region. More 

ecently, sparse patch-based method (SPBM) shows improved ro- 

ustness and accuracy of segmentation results. In this approach, 

andidate atlas patches with sparse constraints are applied to ob- 

ain the weight of the target patch [6,23,24] . Some approaches are 

lso proposed based on PBM/SPBM to improve the accuracy and 

obustness. For example, AR+LKSRC method constructs a proba- 

ilistic atlas of deep structures by registration and applies a sparse 

epresentative classifier to refine results around boundaries [25] . 

here is also another framework that can improve the discrimina- 

ive power in patch-based label fusion by a manner of using neural 

etworks to calculate patch embeddings [21] . An appealing aspect 

s that deep learning methods can automatically learn high level 

eatures of images through manual design or automatic search of 

eural networks. However, the memory complexity of training lim- 

ts the number of atlases which can be effectively used for seg- 

entation. For example, a correlation method uses only 5 atlas 

mages for each target image by using convolutional neural net- 

orks [21,26] . By contrast, in brain MR image segmentation, usu- 

lly around 10 atlases are used [27,28] . So we focus on patch-based 

abel fusion method under multi-atlas framework. It is worth not- 

ng that a formula is integrated to embed the patch into the CRF 

odel in our work. 

In the literature, most existing PBM methods [19–28] adopt a 

redefined distance metric model to measure the intensity-based 

imilarity between target patch and atlas patches. This kind of sim- 

larity measure can not effectively characterize statistical distribu- 

ions of image intensities [29] . For example, patches with similar 

ntensity values may be compatible with different segmentation 

abels [30,31] . To alleviate this drawback, a robust discriminative 

abel fusion method under MAS framework is proposed. Instead of 

 pre-fixed distance metric model, a novel metric learning is inte- 

rated into CRF model with the graph cuts to enhance the discrim- 

native observation. Furthermore, to fully make use of the prior in- 

ormation of the multi-atlas, SPBM method is adopted to polish 

he obtained segmentation in label space. The proposed method 

chieves more accuracy segmentation results. The main contribu- 

ions are as follows: 

1) A fast “coarse-fine” hybrid registration method is presented 

to alleviate the high computational cost of image registration. 
2 
The proposed method adopts the resampling algorithm in the 

coarse registration stage. Compared with rigid registration, re- 

sampling does not require any iterative optimization process to 

achieve rough alignment between each candidate image and 

the target image. Thereby the computational cost is reduced 

compared with classical “coarse-fine” registration stage. 

2) A robust discriminative multi-atlas label fusion method is pro- 

posed. It is a patch embedding segmentation method on the 

basis of CRF model, which integrates distance metric learning 

and graph cuts. Specifically, Bayesian theorem is adopted to ex- 

tend the classical distance metric learning and large margin 

constraints are exploited instead of pairwise constraints. Com- 

pared with the fixed (non-learning) distance metrics, it can ob- 

tain a more robust distance metric. This well-designed learning 

metric is adopted to model the unary potential function of CRF. 

The spatial prior term fully considers the pairwise homogene- 

ity of two adjacent nodes and is used in the pairwise potentials 

function of CRF. Both parts can enhance the discriminative ob- 

servations, so this method potentially improves the segmenta- 

tion performance of the hippocampus. 

3) Furthermore, considering the label map with rich prior in- 

formation is not fully used, we refine the segmentation re- 

sults based on SPBM method. In this approach, candidate la- 

bel patches with sparse constraints are applied to obtain the 

weight of the initial segmentation patch. Compared with state- 

of-the-art methods, the proposed approach can obtain more ac- 

curate hippocampal segmentation results. 

The rest of the paper is arranged as follows. The fast “coarse- 

ne” hybrid registration method and the proposed robust discrim- 

native multi-atlas label fusion method are presented in Section 2; 

ection 3 describes the experimental results for the hippocam- 

us segmentation; The discussion and conclusions are given in 

ection 4 and Section 5 respectively. 

. Materials and methods 

MAS aims to achieve the segmentation of the target subject 

y fully utilizing multiple sets of atlas grayscale images and their 

orresponding label maps. The proposed segmentation scheme is 

ased on MAS and involves four main steps: (1) MR images pre- 

rocessing, (2) “coarse-fine” hybrid registration, (3) label fusion 

ased on our robust discriminative multi-atlas label fusion method 

nd (4) refine segmentation by SPBM in label space. Fig. 1 shows 

 flowchart of the proposed overall robust multi-atlas label fusion 

ethod. 

When analyzing the structure of the brain, many factors can 

nterfere with image segmentation, such as the background, the 

rain shell, and the gray unevenness of the image. Therefore, it 

s essential to pre-process the primitive MR images before seg- 

enting the hippocampus. In our work, skull stripping, N4-based 

ias field correction and intensity standardization are performed, 

hereby standardizing the strength range of experimental data, so 

hat the subsequent processing can be carried out smoothly. In our 

ethod, 8 most similar MR images are selected for each target 

ubject from the data set based on the mutual information (MI) 

easurement. Then, each candidate image is registered with the 

arget image by the proposed fast “coarse-fine” hybrid registration. 

ext, based on the registered atlases, the target label is inferred by 

he proposed robust discriminative multi-atlas label fusion (RDLF) 

ethod. Furthermore, SPBM method is adopted to refine the seg- 

entation results in label space (RRDLF), so as to fully use the 

rior information of atlases. The specific details will be introduced 

n the following sections. 
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Fig. 1. Flow chart of the proposed hippocampus segmentation scheme. The proposed segmentation scheme involves four main steps: (1) MR images preprocessing, (2) 

“coarse-fine” hybrid registration, (3) label fusion based on our robust discriminative multi-atlas label fusion method and (4) refine segmentation by SPBM in label space. 

Fig. 2. Schematic of resampling. After resampling, the origin, spacing, and size of the input image are changed to become the same as the reference image. 
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.1. A fast “Coarse-fine” hybrid registration 

“Coarse-fine” hybrid registration is utilized in most multi-atlas 

egmentation algorithms to establish spatial correspondence be- 

ween the atlas and the target image. The fine registration, gen- 

rally referring to non-rigid registration, requires that the atlases 

nd the target image possess the identical spatial sampling point 

nd the same spatial distance of the sampling points. Therefore, a 

oarse registration is necessary before the fine registration process 

o reduce the deformation difference of the non-rigid registration. 

igid registration is the most commonly used coarse processing 

ethod. However, rigid registration is time-consuming, since the 

ata amount of each 3D medical image is very large and rigid reg- 

stration needs to iteratively calculate transformation parameters 

etween dozens of atlas images and target image. Hence, it makes 

t difficult to meet clinical needs. 

In this article, we propose a fast “coarse-fine” hybrid registra- 

ion using resampling instead of rigid registration. The resampling 

ethod maps the spatial coordinates of the input image to gen- 

rate a new image based on the voxel position and voxel spacing 

f the reference image. Thus the spatial sampling point and sam- 

ling distance of the input image are adjusted. As shown in Fig. 2 ,

t is a simple schematic of the resampling process with 2 D slices 

s an example to make it easier to understand. The coordinate of 

ixel IR = (IR x , IR y ) of the resampled image in physical space is

 R = (P R x , P R y ) . Since resampling is performed in spatial coordi-

ates, not pixel/grid coordinates. Therefore, the resampling filter 

djusts the gray of the output image according to the brightness 

alue of the spatial position P I of the input image. The coordinate 

f the P I point is associated with pixel II = (II x , II y ) on the input

mage. If I I does not fall on the grid position, the value pointing
3 
o the output pixel will be calculated by inserting values around 

he non-integer IR in the input image. By traversing each point in 

he reference image, the input image is resampled to the template 

pace. Thus the problem of inconsistency of space sampling points 

etween atlas image and the target image is adjusted. 

Unlike rigid registration, the resampling operation makes the 

tlas images have the same isotropic sampling rate as the refer- 

nce image, while there is no complicated iterative optimization 

rocess. Meanwhile, the size and center of each candidate im- 

ge is regulated to be consistent with the target image. Thus, the 

oughly alignment can be achieved in a faster way. In order to in- 

rease the speed of MAS and reduce the impact of other anatom- 

cal structures on hippocampus segmentation, here we define the 

egion of interest for the anatomic structure as the smallest bound- 

ng box, which contains the research structure (left or right hip- 

ocampus) of all training atlases. After that, the standardized ob- 

ect images are cut around the structures of interest. For the fine 

egistration task, the differential homeomorphic Demons algorithm 

32] is adopted on account of its high efficiency, high accuracy and 

he ability of dealing with large deformation problems. The overall 

ramework of our fast “coarse-fine” hybrid registration is shown in 

ig. 3 . 

.2. Robust discriminative multi-atlas label fusion method 

In this subsection, the robust discriminative label fusion 

ethod is elaborated in detail. Fig. 4 depicts the main idea of our 

abel fusion method. In the proposed multi-atlas framework, we 

ombine a novel metric learning and graph cuts algorithm by an 

ffective segmentation scheme based on CRF model. The presented 

istance metric learning is used to model the unary potential. It 
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Fig. 3. The flowchart summarizes the process of the fast “coarse-fine” hybrid registration. In the coarse registration phase, the resampling algorithm is used to adjust the 

problem of inconsistent of sampling points, thus realizing the rough alignment of the atlas images and the target image. In the non-rigid registration phase, the differential 

homeometry Demons algorithm is applied to obtain accurate registration results. 

Fig. 4. Illustration of robust discriminative multi-atlas label fusion method for hippocampus segmentation. The presented distance metric learning method is used to model 

the unary potential function (left part). The graph cuts part is designed to model the pairwise potentials function of CRF model (right part). 
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mploys a Bayesian inference to extend a classic distance metric 

earning and uses large margin constraints instead of the pairwise 

onstraints. Spatial prior term is designed to model the pairwise 

otentials function of CRF model. This part considers the pairwise 

omogeneity in classification labels and the pixel intensity. The 

esulting segmentation problem is described as a mapping esti- 
4 
ation for searching the most likely binary image segmentation, 

hich allows the solution to be calculated effectively through the 

aximum flow or minimum cut optimization process. The specific 

etails of the whole model are given as bellows: 

Assume that X is the observation vector of the entire image (i.e. 

he characteristics of all pixels), and Y = { y 1 , y 2 , . . . , y i . . . } is the 
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ategory label corresponding to all pixels in the image X . For two 

ypes of segmentation problems, the label of the pixel at index i 

s y i ∈ Y and y i ∈ { 0 , 1 } , where 0 represents the background and 1

epresents the target. 

In CRF model, the posterior probability is directly modeled as a 

ibbs distribution according to the Hammersley-Clifford theorem. 

hen the image observation data X is given, CRF directly models 

he posterior probability distribution of the label Y . The formula is 

s follows: 

 (Y | X ) = 

1 

N(X ) 
exp(−E(Y | X )) , (1) 

here N is the normalization factor, and E(Y | X ) is the Gibbs en- 

rgy function. In general, the problem of segmenting an image 

an be viewed as the maximum posterior estimation problem of 

earching for the most likely label mapping: 

 

∗ = arg max 
Y 

P (Y | X ) = arg min 

Y 
E(Y | X ) . (2)

Using CRF for image segmentation, assume only the unary po- 

ential and the pairwise potentials function are considered, the en- 

rgy function can be expressed as follows: 

(Y | X ) = 

∑ 

iε�

V i (y i , x i ) + 

1 

ζ

∑ 

iεN i 

∑ 

jεN i 

V i j ( y i , y j , X ) , (3) 

here � is the index set of the voxel x in the image X , and N i is

he index set of the neighborhood of the voxel x i . V i (y i , x i ) is the

nary potential function, which is used to describe the probabil- 

ty that the voxel with index i belongs to the label y i . V i j ( y i , y j , X )

s the pairwise potentials function that describes the association 

etween adjacent points of a voxel and its impact on category de- 

ermination. ζ measures the relative importance of the energy of 

he second-order potential function. In the cases that the feature 

ector values of two neighboring pixels are the same but different 

abels are assigned, the pairwise potentials function should impose 

 larger penalty. 

.2.1. The unary potential 

This paper uses Bayesian formula to extend the unary potential 

unction of the CRF model, and the probability value of voxel fea- 

ures x i that belongs to the corresponding category is used as the 

alue of the unary potential energy function: 

 i (y i , x i ) = −lnp(y i | x i ) = −ln 

p(x i | y i ) p(y i ) 

p(x i ) 
, (4)

here x i ∈ X is the feature vector. The gray level of each region 

f medical image changes relatively slow and the gray statistical 

istogram always shows multi-peak characteristics. Compared with 

ingle Gaussian model, the Gaussian mixture model (GMM) can re- 

uce the misclassification of pixels. Hence, we adopt Gaussian mix- 

ure model to describe the gray statistical characteristics of MR im- 

ges: 

p( x i ) = 

m ∑ 

g=1 

αg N g ( x i , u g , ε g ) , (5) 

here m represents the number of Gaussian model components, 
m ∑ 

=1 

αg = 1 , αg is a weighting factor, N g is a Gaussian probability 

ensity function, which can be expressed as follows: 

 g ( x i , u g , ε g ) = 

1 √ 

(2 π) 
g | ε g | 

exp (−1 

2 

(x i − μg ) 
T ε −1 

g (x i − μg )) , (6) 

here u g and ε g represent the mean vector and covariance matrix 

f all pixels belonging to the gth model. In this paper, we adopt the 

xpectation Maximum algorithm to estimate GMM parameters. 
5 
Then, the focus is on how to get a robust posterior probability 

stimation. The following formula is used to calculate the image 

ikelihoods of each voxel in target image: 

p(x i | y i ) ∝ 

∑ 

p i εN k (p x ) 

exp −‖ p x −p i ‖ 2 M , (7) 

here p x is the target patch with the size of r p × r p × r p . N k (p x ) is

he neighborhood which is similar to the target patch p x . For each 

arget voxel, voxels are extracted from per atlas image in a fixed 

ubic search region with size of r s × r s × r s . Atlas patches which 

re centered at these voxels are used to construct a patch library 

 L = (p i , y i ) i =1 , 2 ,...,N , in which p i is the i th image patch and y i is the

abel of its center voxel. Note that M is the distance metric, and the 

istance between target patch p x and atlas patch p i is computed by 

ahalanobis distance. It’s calculation formula is as follows: 

 

2 
xi = d(p x , p i ) = (p x − p i ) 

T M(p x − p i ) . (8)

ccording to d(p x , p i ) , k nearest neighbor algorithm is used to se-

ect k nearest training samples, and then form a nearest neighbor- 

ood set N k (p x ) . So the unary potential energy function is defined

s: 

 i (y i , x i ) = −lnp(y i | x i ) = −ln 

∑ 

p i εN k (p x ) 

exp −‖ p x −p i ‖ 2 M 

m ∑ 

g=1 

αg N g ( x i , u g , ε g ) 

p(y i ) . (9)

In order to gain a more robust distance M, we develop a new 

etric learning method in this work. Following reference [33,34] to 

earn a robust distance metric, in this work, the Bayesian inference 

s applied to distance metric learning, which estimates the pos- 

erior distribution with large margin nearest neighbor constraints. 

ccording to Bayesian inference, prior probability of the distance 

atrix parameter M is given as p(M) , and likelihood probability is 

efined as p(A | M) . Then the posterior distribution p(M| A ) can be

stimated based on the training data A . For our work, we introduce 

 Gaussian prior for the transformation matrix M. According to the 

rinciple of large margin nearest neighbor method, the likelihood 

unction is defined as: 

 (A | M) = 

∏ 

i, j,lεA 

prob(p i , p j , p l , y i , y j , y l | M) 

= C 
∏ 

i, j,lεA 

exp[ −2 × max (1 + d 2 i j − d 2 il , 0) ] . (10) 

Let y i j = 1 denotes a pair of similar data samples with y i = y j ,

nd y i j = 0 indicates a dissimilar pair. In the above formula, A is 

he training set containing | A | independent triplets (i, j, l) , which 

atisfies 1 + d 2 
i j 

− d 2 
il 

> 0 , (y i j )(1 − y il ) = 1 , p j and p l belong to the

et of neighbors of p i . The triplets are constructed by KNN method, 

n which we select the nearest homogeneous sample and the near- 

st heterogeneous sample for each sample from the patch library 

 L . Here C is a normalizing constant. The function incorporates the 

dea of a margin, in which the purpose is to learn a distance metric 

hat can separate d i j and d il by a large margin. 

According to the formula in the Bayesian model, the poste- 

ior distribution probability P (M| A ) of the transformation matrix 

arameter M is satisfied P (M| A ) ∝ P (A | M) P (M) . In order to use

ayesian theorem, a lot of Gaussian distributions are worked to 

pproximate each single likelihood function. The Gaussian approxi- 

ation of the known Laplace distribution is described as follows: 

a (x | 0 , δ) = 

1 

2 δ
exp −| x | 

δ

= 

∫ ∞ 

0 

1 √ 

2 πβ
exp(− x 2 

2 β
) · 1 

2 

δ−2 exp(− β

2 δ2 
) dβ. (11) 

ince: 
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individual- adult- brain- atlases/ 
xp(−2 × max (α, 0) ) = exp(−| α| − α) 

= 

∫ ∞ 

0 

1 √ 

2 πβ
exp(− α2 

2 β
− α) 

·1 

2 

exp(−β

2 

) dβ. (12) 

o the likelihood function becomes: 

 (A | M) = 

∏ 

i, j,lεA 

prob(p i , p j , p l , y i , y j , y l | M) 

= 

∫ ∞ 

0 

1 √ 

2 πλi jl 

exp(−1 

2 

(1 + d 2 
i j 

− d 2 
il 

+ λi jl ) 
2 

λi jl 

) dλi jl , (13) 

here λi jl is essentially an induced parameter. M is the distance 

atrix. In our work, the distance function d 2 
i j 

are reformulated in 

 linear form, namely: 

 

2 
i j = T r[ M(p i − p j )(p i − p j ) 

T ] = γ T p i j , (14)

here the γ and p i j are the vectorized forms of matrices M

nd (p i − p j )(p i − p j ) 
T respectively. So the objective can be boiled 

own to seeking the optimal γ , whose posterior distribution can 

e estimated by employing the factorial variation inference [35–

7] . The main idea is to adopt factorized variational distribution to 

pproximate the distribution of the posterior probability and then 

he goal becomes to minimize the KL divergence until convergence. 

he parameter λi jl is initialized in the same way as factorized vari- 

tional distribution. More detailed information on this part can be 

ound in reference [37,38] . With the learned Mahalanobis distance 

etric M, the unary potential function in our work can be easily 

onstructed. 

.2.2. The pairwise potentials 

The pairwise potentials function consists of a spatial prior term, 

hich considers the pairwise homogeneity based on multi-atlas 

oxel intensities and classification labels. Following Boykov’s anal- 

sis in the article [39] , the function is defined as follows: 

 i j ( y i , y j | X ) = 

{
B (i, j| X ) y i � = y j 

0 otherwise , 
(15) 

 (i, j| X ) = exp (−1 

2 

( I i − I j ) 
2 

σ 2 
) · 1 

d ist(i, j ) 
, (16) 

here B (i, j| X ) represents the cost of target boundaries. I i and I j 
re the intensity values of voxels with index i and j. If the vox- 

ls jumps sharply between I i and I j , they are considered to belong 

o different classes and only small penalties are assigned. dist(i, j) 

s the Euclidean distance. The parameter δ represents the noise 

stimation. The pairwise potentials function emphasizes homoge- 

eous segmentation between adjacent voxels. It prevents the over 

egmentation of sharp edges by weighting the penalty for hetero- 

eneity in terms of intensity similarities of the related voxels. 

With the equality 

 

∗ = arg max 
Y 

P (Y | X ) = arg min 

Y 
E(Y | X ) 

= arg min 

Y 

∑ 

iε�

(−lnp(y i | x i )) + 

1 

ζ

∑ 

iεN i 

∑ 

jεN i 

V i j ( y i , y j , X ) , (17) 

he original optimization problem can be converted into an energy 

inimization problem, which can be optimized in a proper form 

y graph cutting algorithm [39,40] . 

.3. Refine segmentation result in label space 

In Section 2.2 , the atlases are utilized to calculate Gaussian mix- 

ure model and estimate the posterior probability. Actually, the la- 

el information of atlases is rich of prior information and is very 
6 
mportant for similarity measurement. To take fully advantage of 

hese prior knowledge, on the basis of the segmentation result ob- 

ained in the previous subsection, we adopt SPBM to further refine 

he segmentation in label space. The principle of SPBM is shown 

n Fig. 5 . In this subsection, we will present the processing of the 

egmentation refinement. 

The PBM model can be depicted by Eq. (2.3) . Suppose v i repre- 

ents the voxel at location i of the image and v s, j represents the 

oxel of the subject s at location j. The final label is estimated 

ased on the weighted label fusion of each selected sample. The 

ormula is as follows 

 oting(v i ) = 

N ∑ 

s =1 

∑ 

jεO i 
w 

i 
s, j 

y s, j 

N ∑ 

s =1 

∑ 

jεO i 
w 

i 
s, j 

. (18) 

here O i is the search area for N selected atlases, y s, j is the la- 

el of voxel v s, j . w 

i 
s, j 

is the corresponding weight between v i and 

 s, j , which is often calculated by the similarity between two vox- 

ls. Obviously, the similarity measure in Eq. (2.3) is the core of 

he PBM. Inspired by sparse representation in face recognition and 

ther aspects, adding a sparse constraint to a fusion algorithm 

ased on non-local averages can get more accurate segmentation 

esults [31] . Therefore, the following sparse representation model 

s adopted to calculate the weight w 

i 
s, j 

between two different la- 

els y i and y s, j . 

in 

w 

i 
s, j 

1 

2 

∥∥∥∥∥
N ∑ 

s =1 

∑ 

jεO i 

D s w 

i 
s, j − G (y ) 

∥∥∥∥∥
2 

2 

+ λ
N ∑ 

s =1 

∑ 

jεO i 

∥∥w 

i 
s, j 

∥∥
1 
. (19) 

q. (18) is similar to the traditional SPBM algorithm, except that 

he elements of D s and G (y ) are label information instead of in- 

ensity information. The regularization parameter λ controls the 

parsity of w 

i 
s, j 

. Specifically, the previous item is used to minimize 

econstruction errors. The function of the latter term is a sparse 

onstraint, where λ is a regularization parameter balancing the 

elative contributions of these two terms. Eq. (18) is a l 1 − norm 

ptimisation problem, so the sparse representations can be ob- 

ained by using the Lasso method [41] . Once the weighting vec- 

ors are calculated, the estimation of the label can be derived using 

q. (2.3) . 

. Experiments 

The performance of the proposed methods are evaluated on 

wo brain MR image datasets for right and left hippocampus seg- 

entation. The experimental results will be introduced in details 

n the following paragraphs. 

.1. Dataset 

The proposed methods are evaluated on Individual Adult Brain 

tlases (IABA) dataset and Alzheimer’s Disease Neuroimaging Ini- 

iative (ADNI) dataset, which are widely used for evaluating hip- 

ocampus segmentation. IABA dataset 1 is launched by the Medical 

rain Research Dataset at Imperial College London. It contains 20 

amples, each of which is provided as a T1-weighted MR grayscale 

mage and a corresponding label map. Experts labeled 67 struc- 

ures in labeled brain images, such as the hippocampus, thalamus, 

erebellum, and tonsils. Figure 6 is the slices display of the MR 

http://brain-development.org/brain-atlases/adult-brain-atlases/individual-adult-brain-atlases/
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Fig. 5. Overview of SPBM which embeds the label structure (take a 2D image as an example, and assume the patch size is 3 × 3) . 

Fig. 6. The axial, sagittal, and coronal slice display of the MR image. The first row is the two-dimensional display of the 43rd slice, and the second row is the two-dimensional 

display results of the 56th, 70th, 105th slices, respectively. The red part represents the right hippocampus, and the green indicates the left hippocampus. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Demographic and clinical information of the studied ADNI sub- 

jects. 

Age Male/Female MMSE Education 

NC 75.8 ±6.8 17/13 29.1 ±1.1 15.2 ±3.1 

MCI 75.2 ±7.6 22/15 26.3 ±2.8 15.7 ±2.6 
mage available from IBAB dataset. ADNI dataset 2 is a large clini- 

al medical image dataset, which enables all data and samples to 

e shared with scientists around the world [42–44] . It contains a 

ot of annotated MR images, from which we randomly select 105 

ets of MR images. Demographic and clinical information of these 

ubjects are summarized in Table 1 . 
2 http://adni.loni.usc.edu/ 

AD 74.0 ±8.1 20/18 21.9 ±4.1 15.9 ±2.7 

7 

http://adni.loni.usc.edu/
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Table 2 

Time-consuming of the fast “coarse-fine” registration method for segmentation of hippocampus (s). 

Subjects Resampling ROI extraction Non-rigid registration Warp Mean Fuse (Our) Total 

No.1 4 1 3 0.5 

No.2 5 1 3 0.5 

No.3 4 1 2 0.5 

No.4 4 1 3 0.5 8.88 196 267 

No.5 5 1 2 0.5 

No.6 5 1 4 0.5 

No.7 4 1 3 0.5 

No.8 5 1 3 0.5 

Table 3 

Time-consuming of classical “coarse-fine” registration method for segmentation of hippocampus 

(s). 

Subjects Rigid registration ROI extraction Non-rigid registration Warp Mean 

No.1 406 1 3 0.5 

No.2 745 1 3 0.5 

No.3 453 1 4 0.5 

No.4 450 1 3 0.5 575.13 

No.5 765 1 3 0.5 

No.6 521 1 2 0.5 

No.7 517 1 3 0.5 

No.8 709 1 2 0.5 
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.2. Evaluation measures 

Dice Similarity Coefficient, Jaccard Coefficient and Mean Dis- 

ance (MD) are commonly applied to measure the performance of 

he segmentation approaches for hippocampus. They all measure 

he similarity between automatically segmented hippocampus and 

old standard. In this paper, we also adopt these three evaluation 

etrics. Given the gold standard T and the automatic segmenta- 

ion result S, the evaluation measures are defined as: 

ice (T , S) = 

2 ‖ 

T ∩ S ‖ 

‖ 

T ‖ 

+ ‖ 

S ‖ 

(20) 

accard(S, T ) = 

V I(S ∩ T ) 

V I(S ∪ T ) 
(21) 

D = mea n T ∈ BE ( min 

S∈ BF 
‖ 

S − T ‖ 2 ) . (22) 

In above formulas, V I represents the volume size of the seg- 

ented region. BE and BF denote the boundary voxels of gold stan- 

ard and segmented image respectively. The first two metrics mea- 

ure the degree of overlap between automatically segmentation re- 

ults and gold standard. The boundary difference is characterized 

y MD metric, which measures the surface distance between gold 

tandard and automatically extracted results [45] . 

In this work, we apply the leave-one-out cross-validation 

ethod, in which one subject is selected as the target, and other 

mages are used for atlas matching. Then, the differences between 

he automatically extracted results and the gold standard are cal- 

ulated to verify the feasibility of our proposed method. 

.3. Parameter settings 

There are mainly four parameters in our proposed method, 

ncluding search radius r s , patch radius r p , the number of the 

ost similar samples k in RDLF, and regularization parameter λ
n RRDLF. In general, r p is associated with the complexity of the 

tructure, while r s is related to the variability of the structure [46] . 

e investigated the effects of patch radius r p and search radius r s 
n the case of hippocampus segmentation. For example, the param- 

ter settings proposed by Rousseau et al. [47] are that the patch ra- 

ius is 1 voxels and the search radius is 5 voxels, whereas Platero 
8 
nd Tobar [48] and Tong et al. [23] adopt a patch radius of 2 and a

earch radius of 3 voxels. In this paper, the patch radius is set to 2

nd the search radius is tuned to 3. Regularization parameter λ is 

et to be 0 . 01 λmax referring to the penalty parameter λ in SPBM, 

here λmax can be obtained automatically by the Lasso algorithm. 

nd we set the number of the nearest neighbors k = 9 empirically. 

Besides, our experiments use VS2010, ITK, CMAKE, VTK open 

ource platforms, MATLAB and combine with ITK-SNAP to finally 

omplete the left and right hippocampus segmentation under Win- 

ows 7 environment. 

.4. Fast “coarse-fine” registration performance 

One of the major issues in multi-atlas segmentation methods 

s the computational burden of image registration. To reduce the 

igh computational cost, a fast “coarse-fine” hybrid registration is 

roposed. Firstly, top 8 atlases are selected based on MI ranking 

etween target image and atlas images. In order to describe suc- 

inctly and clearly, these selected atlases are renumbered from 

o.1 to No.8. After the atlas selection, each atlas image is regis- 

ered to the target image using the proposed registration method 

nd classical registration method, respectively. Tables 2 and 3 de- 

ict the time consuming for one randomly selected target image 

n IABA dataset. The first to fourth columns display the time spent 

n rigid registration or resampling operation, ROI extraction, non- 

igid registration, and template warping process. The last column 

s the average time of the entire registration process for the se- 

ected 8 atlas images. As shown in Tables 2 and 3 , the average

ime of the presented registration is only 8 . 88 s , while the classi-

al method takes 575 . 13 s , which improves the speed of registra- 

ion by more than 64 times. Table 2 also displays the time of la- 

el fusion and the entire inference time in the last two columns 

espectively, which shows the total time consumption of our seg- 

entation framework is 267s. 

For 10 randomly selected target images from IABA dataset, 

able 4 shows the comparison segmentation results evaluated by 

etric Dice ratio using MV [19] method which is the simplest one. 

he results of the first line are obtained by the classical method. 

he second are generated based on our method. It is observed 

hat the proposed “coarse-fine” registration method shows signif- 
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Fig. 7. Dice coefficient box-plot of the left and right hippocampus segmentation results of IABA dataset. Red box represents the left hippocampus segmentation result, while 

blue indicates right hippocampus segmentation result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 4 

Dice ratio for our fast “coarse-fine” registration and classical “coarse-fine” registra- 

tion (mean ±std) 

Registration method Left hippocampus Right hippocampus 

Classical “coarse-fine” registration 0.83 ±0.033 0.85 ± 0.027 

Fast “coarse-fine” registration 0.83 ± 0.034 0.86 ± 0.029 
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cant improvements in speed over classical “coarse-fine” registra- 

ion without affecting the accuracy of segmentation. 

.5. Segmentation accuracy 

To measure the performance of our proposed methods, we 

ompare our method with MV [19] , PBM [22] , SPBM [23] , DS

48] and DLLF. Among them, DS is a CRF model based on non-rigid 

egistration method, DLLF is a convolutional method with deep 

earning using VGG-19. We denote the proposed robust discrimi- 

ative label fusion algorithm RDLF, and denote RDLF with the seg- 

entation refinement process in label space RRDLF. 

.5.1. Experimental results on IABA dataset 

The box-plot shown in Fig. 7 illustrates the distribution of Dice 

or the proposed methods and the compared approaches on IABA 

ataset. For more intuitive observation, Fig. 8 shows the mean 

alue of Dice ratio. As we can see, the proposed methods outper- 

orm other label fusion methods based on Dice metric, due to the 

obust discriminative observation given by our model. 

To better compare the performance of segmenting both left and 

ight hippocampus, Table 5 displays the values of Dice, Jaccard and 

D obtained by different methods. From Table 5 , the proposed 

ethod achieves the best performance with regard to three eval- 

ation metrics. For instance, with respect to the Dice on the left 

ippocampus (the right hippocampus), RDLF improves 3 . 7% , 3 . 0% ,
9 
 . 7% , 1 . 5% , and 0 . 9% ( 2 . 6% , 1 . 7% , 1 . 2% , 1 . 1% , and 0 . 7% ) over MV,

BM, SPBM, DS and DLFF respectively. The average values of Jac- 

ard and MD for segmenting left hippocampus (right hippocam- 

us) are 0.765 and 0.243 (0.771 and 0.222) achieved by RDLF, 

hich are higher than the second best results achieved by DLFF. As 

hown in Table 5 , RRDLF increases the Dice values in segmenting 

he left and right hippocampus by 0 . 3% and 0 . 2% based on RDLF. 

In addition to measuring the performance of the method via 

valuation scores, Fig. 9 shows visual segmentation examples us- 

ng different methods on hippocampus, where green denotes the 

old standard, and red denotes the segmentation results obtained 

y different automatic labeling methods. It is known that the 

ippocampus is a relatively smooth organizational structure in 

iomedicine. As can be seen from these figures, the shape and size 

f the hippocampus extracted by the proposed method are very 

lose to the gold standard, but smoother than the gold standard. 

.5.2. Experimental results on ADNI dataset 

The performance of the proposed methods are also assessed 

n ADNI dataset. Figure 10 shows box-plot with the distribution 

f Dice for different methods in right and left hippocampus seg- 

entation. Fig. 11 is a visual display of mean Dice average values 

f ADNI dataset. As we can see, compared with the conventional 

ounterparts, the proposed methods have better performance in 

eneral. To better evaluate the performance, Table 6 shows the 

ean and standard deviation of Dice, Jaccard and MD across the 

arget subjects. 

As we can be seen from Table 6 , the proposed method ob- 

ains the highest average Dice scores. RDLF is approximately 1 . 1% 

 0 . 7% ) higher than suboptimal method DLLF for left hippocampus 

egmentation (right hippocampus segmentation). The average Jac- 

ard and MD values generated by RDLF are 0.763 and 0.270 for 

eft hippocampus (0.771 and 0.263 for right hippocampus), which 

s superior to each competitive approach (MV, PBM, SPBM, DS and 
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Fig. 8. Comparison of the average Dice values for segmenting left and right hippocampus using different methods from IABA dataset. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

The segmentation results of different methods using IABA dataset (mean ±std). 

Label fusion methods Hippocampus Dice Jaccard MD (mm) 

MV L 0.832 ±0.020 0.732 ±0.033 0.290 ±0.051 

R 0.850 ±0.017 0.747 ±0.029 0.263 ±0.047 

PBM L 0.839 ±0.020 0.736 ±0.030 0.260 ±0.044 

R 0.859 ±0.011 0.756 ±0.021 0.251 ±0.039 

SPBM L 0.852 ±0.014 0.748 ±0.027 0.247 ±0.043 

R 0.864 ±0.012 0.759 ±0.025 0.236 ±0.040 

DS L 0.854 ±0.015 0 . 752 ± 0 . 027 0 . 245 ± 0 . 037 

R 0 . 865 ± 0 . 013 0 . 761 ± 0 . 026 0 . 224 ± 0 . 038 

DLFF L 0 . 860 ± 0 . 033 0 . 756 ± 0 . 044 0 . 257 ± 0 . 048 

R 0 . 869 ± 0 . 016 0 . 767 ± 0 . 029 0 . 227 ± 0 . 043 

RDLF L 0 . 869 ± 0 . 011 0 . 765 ± 0 . 026 0 . 243 ± 0 . 038 

R 0 . 876 ± 0 . 012 0 . 771 ± 0 . 024 0 . 222 ± 0 . 036 

RRDLF L 0 . 872 ± 0 . 016 0 . 772 ± 0 . 029 0 . 243 ± 0 . 040 

R 0 . 878 ± 0 . 016 0 . 774 ± 0 . 028 0 . 221 ± 0 . 039 

Table 6 

The segmentation results of different methods using ADNI dataset (mean ±std). 

Label fusion methods Hippocapus Dice Jaccard MD (mm) 

MV L 0.854 ±0.016 0.742 ±0.029 0.325 ±0.050 

R 0.867 ±0.018 0.753 ±0.030 0.296 ±0.049 

PBM L 0.858 ±0.017 0743 ±0.028 0.314 ±0.042 

R 0.873 ±0.019 0.758 ±0.031 0.274 ±0.053 

SPBM L 0.864 ±0.022 0.747 ±0.035 0.283 ±0.048 

R 0.876 ±0.014 0.759 ±0.027 0.272 ±0.047 

DS L 0 . 868 ± 0 . 021 0 . 753 ± 0 . 033 0 . 280 ± 0 . 041 

R 0 . 878 ± 0 . 010 0 . 764 ± 0 . 023 0 . 265 ± 0 . 035 

DLFF L 0 . 868 ± 0 . 023 0 . 758 ± 0 . 034 0 . 278 ± 0 . 055 

R 0 . 88 ± 0 . 018 0 . 767 ± 0 . 029 0 . 269 ± 0 . 043 

RDLF L 0 . 879 ± 0 . 020 0 . 763 ± 0 . 02 0 . 270 ± 0 . 051 

R 0 . 887 ± 0 . 015 0 . 771 ± 0 . 027 0 . 263 ± 0 . 048 

RRDLF L 0 . 882 ± 0 . 018 0 . 767 ± 0 . 029 0 . 268 ± 0 . 040 

R 0 . 889 ± 0 . 018 0 . 772 ± 0 . 029 0 . 262 ± 0 . 048 
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LFF). Generally, the proposed method RDLF significantly outper- 

orms other methods in three evaluation metrics. Based on RDLF, 

RDLF increases the Dice value by 0 . 2% to 0 . 3% , which is benefit

rom the full use of label information by SPBM method. 

The visualization results for left and right hippocampus are 

hown in Fig. 12 . The labeling results produced by the proposed 

ethods are smoother than the gold standard. It is more biolog- 

cally feasible for smooth results. However, the gold standard is 

anually labeled, there may be discontinuity errors between adja- 
10 
ent slices. Therefore, the proposed segmentation method can pre- 

erve the shape and size of hippocampus well. 

. Discussion 

In this work, a novel multi-atlas patch based label fusion 

ethod is developed for the segmentation of hippocampus. Most 

reviously PBM methods select candidate patches adopting a pre- 

efined distance metric to measure the intensity-based similarity. 
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Fig. 9. Visual comparison of hippocampus segmentation results obtained by different methods on IABA dataset. Top to bottom: the slices display of the axial, sagittal, coronal 

and 3D visualization results. Left to right: gold standard, MV, PBM, SPBM, DS, DLFF, RDLF and RRDLF. 
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owever, this kind of similarity measurement can not effectively 

haracterize statistical distributions of image intensities. Besides 

ost existing labeling fusion methods are typically based on the 

ssumption that image patches with similar intensity share the 

ame label. Nevertheless, this assumption is invalid in some sit- 

ations, since similar patches may possess different labels. These 

ake the segmentation results of hippocampus sensitive to the 

egistration errors and the anatomical structure variability between 

ifferent subjects. 

To alleviate these drawbacks, the proposed method learns map- 

ing functions between the patch and the label by robust distance 

etric learning. Meanwhile, with the spatial prior part, the pair- 

ise homogeneity in classification labels and the pixel intensity is 

ully considered, thus to reduce the probability of misclassification. 

ith the integrated formula of the objective function, the segmen- 

ation can be optimized by an effective graph cuts algorithm. As 
11 
e all know, the label information of atlases is rich of prior infor- 

ation and is very important for similarity measure. To take fully 

dvantage of these prior knowledge, SPBM is used to refine the ob- 

ained segmentation results in label space. This approach turns out 

o be very efficient in estimating the final label of hippocampus. 

In this study, the performance of the proposed method is com- 

ared with five multi-atlas based methods (MV, PBM, SPBM,DS, 

LFF), in terms of Dice ratio, Jacard index and MD metrics on IABA 

nd ADNI datasets. As shown in our experimental results, RDLF 

chieved the Dice of 86 . 9% and 87 . 6% on IABA dataset and Dice

f 87 . 9% and 88 . 7% on ADNI dataset. The comparison results show

hat the proposed methods outperform current competitive meth- 

ds in accordance with Dice, Jaccard and MD. Moreover, the la- 

eling performance of RRDLF achieves a slight improvement on 

hree evaluation metrics (e.g. the improvement of Dice value by 

 . 2% to 0 . 3% ). The experiments on both IABA dataset and ADNI
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Fig. 10. Dice coefficient box-plot of the left and right hippocampus segmentation results of ADNI dataset. Red box represents the left hippocampus segmentation result, 

while blue indicates right hippocampus segmentation result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 11. Comparison of the average Dice values for segmenting left hippocampus and right hippocampus using different methods from ADNI dataset. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ataset show that the proposed method can acquire more promis- 

ng performance for hippocampus segmentation. The experimental 

esults demonstrate that RDLF significantly outperforms the com- 

eting methods. The reasons for the improvement are: (1) distance 

etric learning learns a more robust distance metric. It makes im- 

ge patches which belongs to the same structure close to each 

ther, while image patches of different structures are perfectly sep- 

rated, and (2) spatial prior term fully considers the pairwise ho- 

ogeneity to further improve classification accuracy. Experimental 

esults also exhibit that RRDLF helps improve the labeling perfor- 
12 
ance for hippocampus segmentation. Since the target segmenta- 

ion result is sparsely reconstructed in label space by RRDLF, so the 

abel information is further used in overall labeling process. 

In addition, one of the main issues in the multi-atlas segmen- 

ation is the computational cost for image registration. To alleviate 

his drawback, we also proposed a fast “coarse-fine” hybrid regis- 

ration at the same time. Since resampling does not require any 

terative optimization process compared with rigid registration, as 

 result, the computational burden is reduced. Experimental re- 

ults show it improves the speed of registration by more than 64 
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Fig. 12. Visual comparison of hippocampus segmentation results obtained by different methods on ADNI dataset. Top to bottom: the slices display of the axial, sagittal, 

coronal and 3D visualization results. Left to right: gold standard, MV, PBM, SPBM, DS, DLFF, RDLF and RRDLF. 
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imes compared to classical “coarse-fine” hybrid registration, which 

emonstrates the feasibility of this strategy. 

. Conclusions 

In this paper, an automatic labeling method is developed to 

egment the hippocampus from brain MR images. It is a patch 

mbedding multi-atlas label fusion method based on CRF model 

hat combines distance metric learning and graph cuts. The pro- 

osed label fusion strategy is evaluated on IABA dataset and ADNI 

ataset. Experimental results show that the proposed algorithm 

utperforms other competing hippocampus segmentation meth- 

ds. Meanwhile, to avoid the high computational burden of image 

egistration, a fast “coarse-fine” hybrid registration method is pro- 

osed, which can improved the speed of registration effectively. 

e hope that the proposed model can be developed into a gen- 
13 
ral model, which can easily combine machine learning and deep 

earning algorithms to segment the hippocampus. In the future 

ork, we are interested in developing more robust statistical la- 

el fusion strategy, and applying the proposed framework to auto- 

atically classify patients with AD and/or MCI from hippocampus 

egmentations extracted in brain MR image to better satisfy the 

linical needs. 
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